Irrationality of \(\zeta (3)\)

2 Proof

Definition 2.1
#
\[ P_n(x):=\frac{1}{n!}\frac{d^n}{dx^n}[x^n(1-x)^n] \]
Lemma 2.2
\[ P_n(x)=\sum \limits _{k=0}^{n}(-1)^k\binom {n}{k}\binom {n+k}{n}x^k \]

Hence \(P_n(x)\) is integer polynomial.

Proof
\begin{align*} \frac{1}{n!}\frac{d^n}{dx^n}[x^n(1-x)^n] & = \frac{1}{n!}\frac{d^n}{dx^n}[(x-x^2)^n]\\ & = \frac{1}{n!}\frac{d^n}{dx^n}[\sum \limits _{k=0}^{n} \binom {n}{k}(-1)^k x^{n-k}x^{2k}]\\ & = \frac{1}{n!}\frac{d^n}{dx^n}[\sum \limits _{k=0}^{n} \binom {n}{k}(-1)^k x^{n+k}]\\ & = \frac{1}{n!}\sum \limits _{k=0}^{n} \binom {n}{k}(-1)^k \frac{d^n}{dx^n}[x^{n+k}]\\ & = \frac{1}{n!}\sum \limits _{k=0}^{n} \binom {n}{k}(-1)^k \frac{(n+k)!}{k!}x^{k}\\ & = \sum \limits _{k=0}^{n} \binom {n}{k}(-1)^k \frac{1}{n!}\frac{(n+k)!}{k!}x^{k}\\ & = \sum \limits _{k=0}^{n} (-1)^k \binom {n}{k}\binom {n+k}{n}x^{k} \end{align*}
Lemma 2.3

For \( 0 {\lt} x, z {\lt} 1\),,

\[ \frac{\partial ^n}{\partial y^n}(\frac{1}{1 - (1-xy)z}) = \frac{(-1)^nn!(xz)^n}{(1 - (1-xy)z)^{n+1}} \]
Proof

By definition.

Lemma 2.4

For all \( 0 {\lt} x, z {\lt} 1\), one has

\[ \int _{0}^{1}\frac{P_n(y)}{1 - (1-xy)z} \, dx =(-1)^n \int _{0}^{1} \frac{(xyz)^n(1-y)^n}{(1 - (1-xy)z)^{n+1}} \, dx \]
Proof

By induction and integration by parts.

Lemma 2.5

For all \(n \in \mathbb {R}, n {\gt} -1\),

\[ \int _{0}^{1} -{\rm ln}(x) x^n = \frac{1}{(n + 1)^2} \, dx \]
Proof
\begin{align*} \int _{0}^{1} -{\rm ln}(x)\cdot x^n =& \frac{x^{n+1}}{(n+1)^2} - \frac{{\rm ln}(x) x^{n+1}}{n+1} |_0^1 \\ =& \frac{1}{(n+1)^2} \end{align*}
Lemma 2.6

For all \(k,s,r \in \mathbb {N}\),

\[ -\int _{0}^{1}\int _{0}^{1} {\rm ln}(xy)x^{k+r}y^{k+s}\, dx \, dy = \frac{1}{((k+r+1)^2(k+s+1))}+\frac{1}{((k+r+1)(k+s+1)^2)} \]
Proof
\begin{align*} & -\int _{0}^{1}\int _{0}^{1} {\rm ln}(xy)x^{k+r}y^{k+s}\, dx \, dy \\ =& \int _{0}^{1}\int _{0}^{1} -{\rm ln}(x)x^{k+r}y^{k+s}\, dx \, dy + \int _{0}^{1}\int _{0}^{1} -{\rm ln}(y)x^{k+r}y^{k+s}\, dx \, dy \\ =& \int _{0}^{1} \frac{-{\rm ln}(x)x^{k+r}}{k+s+1} \, dx + \int _{0}^{1}\int _{0}^{1} \frac{x^{k+r}}{(k+s+1)^2}\, dx\\ =& \frac{1}{((k+r+1)^2(k+s+1))} + \frac{1}{((k+r+1)(k+s+1)^2)} \end{align*}
Lemma 2.7

For all \(r,s \in \mathbb {N}\),

\[ J_rs = \sum _{k \in \mathbb {N}} \frac{1}{((k+r+1)^2(k+s+1))}+\frac{1}{((k+r+1)(k+s+1)^2)} \]
Proof
\begin{align*} J_rs =& -\int _{0}^{1}\int _{0}^{1} x^ry^s{\rm ln}(xy) \sum _{k=0}^{\infty } (xy)^k \, dx \, dy \\ =& \sum _{k=0}^{\infty } -\int _{0}^{1}\int _{0}^{1} x^ry^s{\rm ln}(xy)(xy)^k \, dx \, dy \\ =& \sum _{k=0}^{\infty } -\int _{0}^{1}\int _{0}^{1} {\rm ln}(xy)x^{k+r}y^{k+s} \, dx \, dy \\ =& \sum _{n \in \mathbb {N}} \frac{1}{((k+r+1)^2(k+s+1))}+\frac{1}{((k+r+1)(k+s+1)^2)} \end{align*}
Lemma 2.8
\[ J_{00} := -\int _{0}^{1}\int _{0}^{1} \frac{{\rm ln}(xy)}{1-xy} \, dx \, dy = 2\zeta (3) \]
Proof

Obvious.

Lemma 2.9

for all integers \(r {\gt} 0\)

\[ J_{rr} := -\int _{0}^{1}\int _{0}^{1} x^ry^r\frac{{\rm ln}(xy)}{1-xy} \, dx \, dy = 2\zeta (3) - 2 \sum \limits _{m = 1}^{r}\frac{1}{m^3} \]
Proof

By Simplification.

Lemma 2.10

Let \(r\) and \(s\) be non-negative integers, with \(r \neq s\), then

\[ J_{rs} := -\int _{0}^{1}\int _{0}^{1} x^ry^s\frac{{\rm ln}(xy)}{1-xy} \, dx \, dy = \frac{\sum \limits _{m = 1}^{r}\frac{1}{m^2} - \sum \limits _{m = 1}^{s}\frac{1}{m^2}}{r - s} \]
Proof

By Simplification.

Lemma 2.11

For all \(r \in \mathbb {N}^*, d_n\) is lcm of \(\{ 1, 2, \ldots , n\} .\)

\[ d_{r^3} = (d_r)^3 \]
Proof

By prime factor expand.

Lemma 2.12

For all \(r \in \mathbb {N}^*\),

\[ J_{rr} = 2 \zeta (3) - \frac{z_r}{(d_r)^3} \]

for some \(z_r \in \mathbb {Z}\).

Proof

By computing.

Lemma 2.13

For all \(r \in \mathbb {N}^*, d_n\) is lcm of \(\{ 1, 2, \ldots , n\} .\)

\[ d_{r^2} = (d_r)^2 \]
Proof

By prime factor expand.

For all \(r \in \mathbb {N}, r \neq s\),

\[ J_{rs} = \frac{z_{rs}}{(d_r)^3} \]

for some \(z_{rs} \in \mathbb {Z}\).

Proof

By computing.

Lemma 2.15
\[ \int _{0}^{1} \frac{1}{1 - (1 - x)z} \, dz= -\frac{{\rm ln}x}{1 - x} \]
Proof

Substitute \(y = (1 - x)z\) in the integral, and we also have \(dy = (1-x)dz\). Then we deduce that

\begin{align*} \int _{0}^{1} \frac{1}{1 - (1 - x)z} \, dz =& \int _{0}^{1-x} \frac{1}{(1 - y)(1-x)} \, dy \\ =& \frac{1}{1-x}\int _{0}^{1-x} \frac{1}{1 - y} \, dy\\ =& \frac{1}{1-x}[-{\rm ln}(1-y)]_0^{1-x} \\ =& \frac{1}{1-x}[-{\rm ln}(x) + {\rm ln}(1)] \\ =& -\frac{{\rm ln}x}{1 - x} \end{align*}
Definition 2.16
\[ JJ_n := - \int _{0}^{1}\int _{0}^{1} P_n(x)P_n(y)\frac{{\rm ln}(xy)}{1-xy} \, dx \, dy \]

For some integers \(a_n\) and \(b_n\),

\[ JJ_n = \frac{a_n}{d_n^3} + b_n\zeta (3) \]
Proof

Since \(P_n(x) \in \mathbb {Z}[x]\). Suppose \(P_n(x) = \sum \limits _{k=0}^{n}a_kx^k\), where \(a_k \in \mathbb {Z}\).
Then

\begin{align*} JJ_n & = -\int _{0}^{1}\int _{0}^{1} P_n(x)P_n(y)\frac{{\rm ln}(xy)}{1-xy} \, dx \, dy \\ & = -\int _{0}^{1}\int _{0}^{1} \sum \limits _{i=0}^{n}a_ix^i \sum \limits _{j=0}^{n}a_jy^j \frac{{\rm ln}(xy)}{1-xy} \, dx \, dy\\ & = \sum \limits _{i=0}^{n}\sum \limits _{j=0}^{n}a_i a_j -\int _{0}^{1}\int _{0}^{1} x^i y^j \frac{{\rm ln}(xy)}{1-xy} \, dx \, dy\\ & = \sum \limits _{i=0}^{n}\sum \limits _{j=0}^{n}a_i a_j J_{ij}\\ \end{align*}

We have \(J_{rr}\) and \(J_{rs} \in \mathbb {Z}\zeta (3) + \frac{\mathbb {Z}}{d_n^3}\).
So \(JJ_n \in \mathbb {Z}\zeta (3) + \frac{\mathbb {Z}}{d_n^3}\).

Definition 2.18
\[ JJ'_n := - \int _{0}^{1}\int _{0}^{1}\int _{0}^{1} (\frac{x(1-x)y(1-y)z(1-z)}{1-(1-yz)x})^n \frac{1}{1-(1-yz)x} \, dx \, dy \, dz \]
Lemma 2.19

Let \(D = \{ (x,y,z)|x,y,z\in (0,1)\} \), then

\[ \frac{x(1-x)y(1-y)z(1-z)}{(1-(1-xy)z)} {\lt} \frac{1}{24} \]
Proof

We have an inequality

\[ 1-(1-xy)z = 1-z + xyz \geqslant 2\sqrt{1-z}\sqrt{xyz} \]

Then we can deduce that for \((x,y,z) \in D\),

\begin{align*} \frac{x(1-x)y(1-y)z(1-z)}{(1-(1-xy)z)} \leqslant & \frac{x(1-x)y(1-y)z(1-z)}{2\sqrt{1-z}\sqrt{xyz}}\\ =& \frac{\sqrt{x}(1-x)\sqrt{y}(1-y)\sqrt{z}\sqrt{1-z}}{2} \end{align*}

For \(z\in (0,1)\), the max value of \(\sqrt{z}\sqrt{1-z} = \sqrt{z(1-z)}\) is got at \(z=\frac{1}{2}\). And for \(y \in (0,1)\), we have \(y(1-y)^2 - \frac{4}{27} = (y - \frac{4}{3})(y - \frac{1}{3})^2 \leqslant 0\). Then

\[ \sqrt{y}(1-y) = \sqrt{y(1-y)^2} \leqslant \sqrt{\frac{4}{27}} \leqslant \sqrt{\frac{4}{25}} = \frac{2}{5} \]

Then we have

\begin{align*} \frac{x(1-x)y(1-y)z(1-z)}{(1-(1-xy)z)} \leqslant & \frac{2}{5}\cdot \frac{2}{5}\cdot \frac{1}{2}\cdot \frac{1}{2} \\ =& \frac{1}{25} {\lt} \frac{1}{24} \end{align*}
Lemma 2.20

For \(0 {\lt} z {\lt} 1\),

\[ \int _{0}^{1}\int _{0}^{1} P_n(x)P_n(y) \frac{1}{1 - (1 - xy)z} \, dx \, dy = \int _{0}^{1}\int _{0}^{1} \frac{P_n(x)(xyz)^n(1-y)^n}{(1-(1-xy)z)^{n + 1}} \, dx \, dy \]
Proof
Lemma 2.21

For \(0 {\lt} x, y {\lt} 1\),

\[ \int _{0}^{1} \frac{P_n(x)(xyz)^n(1-y)^n}{(1-(1-xy)z)^{n + 1}} \, dz = \int _{0}^{1} \frac{P_n(x)(1-z)^n(1-y)^n}{1-(1-xy)z} \, dz \]
Proof
Lemma 2.22

For \(0 {\lt} z {\lt} 1\),

\[ \int _{0}^{1}\int _{0}^{1} \frac{P_n(x)(1-y)^n}{1-(1-xy)z} \, dx \, dy = \int _{0}^{1}\int _{0}^{1} \frac{(xyz(1-x)(1-y))^n}{(1-(1-xy)z)^{n+1}} \, dx \, dy \]
Proof
Proof
\begin{align*} JJ_n & = \int _{0}^{1}\int _{0}^{1} P_n(x)P_n(y)(\int _{0}^{1} \frac{1}{1 - (1 - xy)z} \, dz) \, dx \, dy \\ & =\int _{0}^{1}\int _{0}^{1}\int _{0}^{1} P_n(x)P_n(y) \frac{1}{1 - (1 - xy)z} \, dx \, dy \, dz \\ & =\int _{0}^{1}\int _{0}^{1}\int _{0}^{1} \frac{P_n(x)(xyz)^n(1-y)^n}{(1-(1-xy)z)^{n + 1}} \, dx \, dy \, dz \\ & =\int _{0}^{1}\int _{0}^{1}\int _{0}^{1} \frac{P_n(x)(1-z)^n(1-y)^n}{1-(1-xy)z} \, dz \, dx \, dy \\ & =\int _{0}^{1} (1-z)^n (\int _{0}^{1}\int _{0}^{1} \frac{P_n(x)(1-y)^n}{1-(1-xy)z} \, dx \, dy) \, dz \\ & =\int _{0}^{1} (1-z)^n (\int _{0}^{1}\int _{0}^{1} \frac{(xyz(1-x)(1-y))^n}{(1-(1-xy)z)^{n+1}} \, dx \, dy) \, dz \\ & =\int _{0}^{1}\int _{0}^{1}\int _{0}^{1} \frac{(xyz(1-x)(1-y)(1-z))^n}{(1-(1-xy)z)^{n+1}} \, dz \, dx \, dy & =JJ’_n \end{align*}
Theorem 2.24
\[ 0 {\lt} JJ_n \]
Proof

Every point is positive.

Lemma 2.25

For \(r, s \in \mathbb {N}\), one has

\[ J_rs = \int _{0}^{1}\int _{0}^{1}\int _{0}^{1} \frac{y^rz^s}{1-(1-yz)x} \, dz \, dy \, dx \]
Proof
\begin{align*} & \int _{0}^{1}\int _{0}^{1}\int _{0}^{1} \frac{y^rz^s}{1-(1-yz)x} \, dz \, dy \, dx \\ =& \int _{0}^{1}\int _{0}^{1}(\int _{0}^{1} \frac{y^rz^s}{1-(1-yz)x} \, dx) \, dy \, dz \\ =& \int _{0}^{1}\int _{0}^{1}(-\frac{{\rm ln}(yz)}{1 - yz}y^rz^s \, dx) \, dy \, dz \\ =& J_rs \end{align*}
\[ JJ_n \leqslant (\frac{1}{24})^n\cdot 2\zeta (3) \]
Proof
\begin{align*} JJ_n & = JJ’_n \\ & \leqslant (\frac{1}{24})^n \int _{0}^{1}\int _{0}^{1}\int _{0}^{1} \frac{1}{1-(1-yz)x} \, dx \, dy \, dz \\ & = (\frac{1}{24})^n J_{00} \\ & = (\frac{1}{24})^n \cdot 2\zeta (3) \end{align*}
Lemma 2.27

One has

\[ \pi (x) = \left(1 + o(1)\right)\int _2^{x}\frac{1}{\log x} \mathsf{d} x. \]

as \(x \to \infty \).

Proof

We need a precise description of auxiliary constants involved in \(o(1)\) and “sufficiently large” for the purpose of formalisation, we write down the proof in an excruciatingly detailed manner so that each step could be transcribed to Lean4 with relative ease.

Prime Number Theorem

We want to show that \(\frac{\pi \left(x\right)}{{ \int _{2}^{x}\frac{\mathsf{d}t}{\log t}}}-1\) is \(o\left(1\right)\), that is for every \(\epsilon \), there exists \(M_{\epsilon }\in \mathbb {R}\) such that \(\left|\frac{\pi \left(x\right)}{{ \int _{2}^{x}\frac{\mathsf{d}t}{\log t}}}-1\right|\le \epsilon \). We know that for all \(2\le x\),

\[ \pi \left(x\right)={\frac{1}{\log x}\sum _{p\le \lfloor x\rfloor }\log p+{\int _{2}^{x}\frac{\sum _{p\le \lfloor t\rfloor }\log p}{t\log ^{2}t}}\mathsf{d}t}. \]

We also know that for all \(0{\lt}\epsilon \), there exists a function \(f_{\epsilon }:\mathbb {R}\to \mathbb {R}\) such that \(f_{\epsilon }=o\left(\epsilon \right)\) and \(f\) is integrable on \(\left(2,x\right)\) for all \(2\le x\) and for \(x\) sufficiently large, say \(x{\gt}N_{\epsilon }\ge 2\)

\[ \sum _{p\le \lfloor x\rfloor }\log p=x+xf_{\epsilon }\left(x\right). \]

Hence for all \(0{\lt}\epsilon \), such an \(f\) satisfies: for \(x\) sufficiently large

\[ \pi \left(x\right)=\frac{x+xf_{\epsilon }\left(x\right)}{\log x}+\int _{2}^{N_{\epsilon }}\frac{\sum _{p\le \lfloor x\rfloor }\log p}{t\log ^{2}t}\mathsf{d}t+\int _{N_{\epsilon }}^{x}\frac{t+tf_{\epsilon }\left(t\right)}{t\log ^{2}t}\mathsf{d}t, \]

which simplifies to

\[ \pi \left(x\right)=\left(\frac{x}{\log x}+\int _{N_{\epsilon }}^{x}\frac{\mathsf{d}t}{\log ^{2}t}\right)+\left(\frac{xf_{\epsilon }\left(x\right)}{\log x}+\int _{N_{\epsilon }}^{x}\frac{f_{\epsilon }\left(t\right)}{\log ^{2}t}\mathsf{d}t\right)+\int _{2}^{N_{\epsilon }}\frac{\sum _{p\le \lfloor x\rfloor }\log p}{t\log ^{2}t}\mathsf{d}t. \]

Integration by parts tells us that

\[ \frac{x}{\log x}+\int _{N_{\epsilon }}^{x}\frac{\mathsf{d}t}{\log ^{2}t}=\int _{N_{\epsilon }}^{x}\frac{\mathsf{d}t}{\log t}+\frac{N_{\epsilon }}{\log N_{\epsilon }}=\int _{2}^{x}\frac{\mathsf{d}t}{\log t}+\left(\frac{N_{\epsilon }}{\log N_{\epsilon }}-\int _{2}^{N_{\epsilon }}\frac{\mathsf{d}t}{\log t}\right). \]

Hence

\[ \pi \left(x\right)=\int _{2}^{x}\frac{\mathsf{d}t}{\log t}+\left(\frac{xf_{\epsilon }\left(x\right)}{\log x}+\int _{N_{\epsilon }}^{x}\frac{f_{\epsilon }\left(t\right)}{\log ^{2}t}\mathsf{d}t\right)+C_{\epsilon }, \]

for some constant \(C_{\epsilon }\in \mathbb {R}\).

\[ \frac{\pi \left(x\right)}{\int _{2}^{x}\frac{\mathsf{d}t}{\log t}}-1=\left(\frac{xf_{\epsilon }\left(x\right)}{\log x}+\int _{N_{\epsilon }}^{x}\frac{f_{\epsilon }\left(t\right)}{\log ^{2}t}\mathsf{d}t\right)/\int _{2}^{x}\frac{\mathsf{d}t}{\log t}+\frac{C_{\epsilon }}{\int _{2}^{x}\frac{\mathsf{d}t}{\log t}}. \]

Remember that \(f_{\epsilon }=o\left(\epsilon \right)\), so we know for all \(0{\lt}c\), there exists \(M_{c,\epsilon }\) such that for all \(M_{c,\epsilon }{\lt}x\),\(\left|f_{\epsilon }\left(x\right)\right|\le c\epsilon \). Then for \(2{\lt}M_{c,\epsilon }{\lt}x\), we have

\[ \begin{aligned} \frac{xf_{\epsilon }\left(x\right)}{\log x} & \le \frac{c\epsilon \cdot x}{\log x}\\ \left|\int _{N_{\epsilon }}^{x}\frac{f_{\epsilon }\left(t\right)}{\log ^{2}t}\mathsf{d}t\right| & \le \int _{N_{\epsilon }}^{M_{c,\epsilon }}\left|\frac{f_{\epsilon }\left(t\right)}{\log ^{2}t}\right|\mathsf{d}t+\int _{M_{c,\epsilon }}^{x}\left|\frac{f_{\epsilon }\left(t\right)}{\log ^{2}t}\right|\mathsf{d}t\\ & \le \int _{N_{\epsilon }}^{M_{c,\epsilon }}\frac{\left|f_{\epsilon }\left(t\right)\right|}{\log ^{2}t}\mathsf{d}t+c\epsilon \int _{M_{c,\epsilon }}^{x}\frac{\mathsf{d}t}{\log ^{2}t}\\ & =\int _{N_{\epsilon }}^{M_{c,\epsilon }}\frac{\left|f_{\epsilon }\left(t\right)\right|}{\log ^{2}t}\mathsf{d}t+c\epsilon \left(\int _{M_{c,\epsilon }}^{x}\frac{\mathsf{d}t}{\log t}+\frac{M_{c,\epsilon }}{\log M_{c,\epsilon }}-\frac{x}{\log x}\right), \end{aligned} \]

hence for \(M_{c,\epsilon }{\lt}x\), we have

\[ \begin{aligned} \left|\frac{xf_{\epsilon }\left(x\right)}{\log x}+\int _{N_{\epsilon }}^{x}\frac{f_{\epsilon }\left(t\right)}{\log ^{2}t}\mathsf{d}t\right| & \le \int _{N_{\epsilon }}^{M_{c,\epsilon }}\frac{\left|f_{\epsilon }\left(t\right)\right|}{\log ^{2}t}\mathsf{d}t+c\epsilon \left(\int _{M_{c,\epsilon }}^{x}\frac{\mathsf{d}t}{\log t}+\frac{M_{c,\epsilon }}{\log M_{c,\epsilon }}\right)\\ & =\int _{N_{\epsilon }}^{M_{c,\epsilon }}\frac{\left|f_{\epsilon }\left(t\right)\right|}{\log ^{2}t}\mathsf{d}t+c\epsilon \left(\int _{2}^{x}\frac{\mathsf{d}t}{\log t}+\frac{M_{c,\epsilon }}{\log M_{c,\epsilon }}-\int _{M_{c,\epsilon }}^{2}\frac{\mathsf{d}t}{\log t}\right). \end{aligned} \]

Denote \(D_{c,\epsilon }\) to be \(\int _{N_{\epsilon }}^{M_{c,\epsilon }}\frac{\left|f_{\epsilon }\left(t\right)\right|}{\log ^{2}t}\mathsf{d}t+c\epsilon \frac{M_{c,\epsilon }}{\log M_{c,\epsilon }}-c\epsilon \int _{M_{c,\epsilon }}^{2}\frac{\mathsf{d}t}{\log t}\), we notice

\[ \begin{aligned} \left|\frac{\pi \left(x\right)}{\int _{2}^{x}\frac{\mathsf{d}t}{\log t}}-1\right| & \le \left(c\epsilon \int _{2}^{x}\frac{\mathsf{d}t}{\log t}+D_{c,\epsilon }\right)/\int _{2}^{x}\frac{\mathsf{d}t}{\log t}+\frac{C_{\epsilon }}{\int _{2}^{x}\frac{\mathsf{d}t}{\log t}}\\ & =c\epsilon +\frac{D_{c,\epsilon }}{\int _{2}^{x}\frac{\mathsf{d}t}{\log t}}+\frac{C_{\epsilon }}{\int _{2}^{x}\frac{\mathsf{d}t}{\log t}}. \end{aligned} \]

In particular, there exists a constant \(D\) such that for all \(\max \left(M_{\frac{1}{2},\epsilon },N_{\epsilon }\right){\lt}x\),

\[ \left|\frac{\pi \left(x\right)}{\int _{2}^{x}\frac{\mathsf{d}t}{\log t}}-1\right|\le \frac{\epsilon }{2}+\frac{D}{\int _{2}^{x}\frac{\mathsf{d}t}{\log t}}. \]

We now bound \(\int _2^x\frac{\mathsf{d}t}{\log t}\). Note that \(\int _{2}^{x}\frac{\mathsf{d}t}{\log t}\ge \frac{\left(x-2\right)}{\log x}\). Hence for \(x{\gt}e^{s}\) with \(s{\gt}1\), \(\int _{2}^{x}\frac{\mathsf{d}t}{\log t}\ge \frac{e^{s}-2}{s}\) , consequently \(\frac{D}{\int _{2}^{x}\frac{\mathsf{d}t}{\log t}}\le \frac{sD}{e^{s}-2}\le \frac{sD}{e^{s}}\le \frac{\epsilon }{2}\) for \(s\) sufficiently large, say \(s{\gt}A_{\epsilon }{\gt}1\). Thus for all \(x{\gt}\max \left(M_{\frac{1}{2},\epsilon },N_{\epsilon },e^{A_{\epsilon }}\right)\), \(\left|\frac{\pi \left(x\right)}{\int _{2}^{x}\frac{\mathsf{d}t}{\log t}}-1\right|\le \epsilon \). This proves \(\frac{\pi \left(x\right)}{\int _{2}^{x}\frac{\mathsf{d}t}{\log t}}-1\) is \(o\left(1\right)\) for sufficiently large \(x\).

Lemma 2.28

One has

\[ \pi (x) = (1 + o(1))\frac{x}{\log x} \]

as \(x \rightarrow \infty \).

Proof
Lemma 2.29

Let \(n\) be a positive integer. Define \(\pi (n)\) as the number of primes less than (or equal to) \(n\). Then, \(d_n \leqslant n^{\pi (n)} \sim e^n\).

Proof

use Prime Number Theorem.

\(\zeta (3)\) is irrational.

Proof
\[ 0 \neq |J_n| \leqslant (\frac{1}{30})^n\cdot 2\zeta (3) \]

Then

\[ 0 {\lt} |\frac{a_n}{d_n^3} + b_n\zeta (3)| \leqslant (\frac{1}{30})^n\cdot 2\zeta (3) \]

which means that

\[ 0 {\lt} |a_n + d_n^3 b_n\zeta (3)| \leqslant d_n^3(\frac{1}{30})^n\cdot 2\zeta (3) \]

Since \(d_n \leqslant n^{\pi (n)} \sim e^n\) and \(e^3 {\lt} 21\), we have

\[ 0 {\lt} |a_n + c_n\zeta (3)| {\lt} 21^n (\frac{1}{30})^n\cdot 2\zeta (3) = 2(\frac{7}{10})^n \zeta (3) \]

where\(c_n = d_n^3 b_n\) is integer.
Assume \(\zeta (3) = \frac{p}{q}, (p,q)=1\) and \(p,q{\gt}0\). Then

\[ 0 {\lt} |qa_n + pc_n| {\lt} 2p (\frac{7}{10})^n \]

So \(n \rightarrow \infty , |qa_n + pc_n| \rightarrow 0\).
Since \(|qa_n + pc_n|\) is a integer, so \(|qa_n + pc_n| \geqslant 1\). Contradiction!
So \(\zeta (3)\) is irrational!